How Data Volume Affects Spark Based Data Analytics on a Scale-up Server
نویسندگان
چکیده
Sheer increase in volume of data over the last decade has triggered research in cluster computing frameworks that enable web enterprises to extract big insights from big data. While Apache Spark is gaining popularity for exhibiting superior scale-out performance on the commodity machines, the impact of data volume on the performance of Spark based data analytics in scale-up configuration is not well understood. We present a deep-dive analysis of Spark based applications on a large scale-up server machine. Our analysis reveals that Spark based data analytics are DRAM bound and do not benefit by using more than 12 cores for an executor. By enlarging input data size, application performance degrades significantly due to substantial increase in wait time during I/O operations and garbage collection, despite 10% better instruction retirement rate (due to lower L1 cache misses and higher core utilization). We match memory behaviour with the garbage collector to improve performance of applications between 1.6x to 3x.
منابع مشابه
Architectural Impact on Performance of In-memory Data Analytics: Apache Spark Case Study
While cluster computing frameworks are continuously evolving to provide real-time data analysis capabilities, Apache Spark has managed to be at the forefront of big data analytics for being a unified framework for both, batch and stream data processing. However, recent studies on micro-architectural characterization of in-memory data analytics are limited to only batch processing workloads. We ...
متن کاملCharacterizing the Performance of Analytics Workloads on the Cray XC40
This paper describes an investigation of the performance characteristics of high performance data analytics (HPDA) workloads on the Cray XC40TM, with a focus on commonly-used open source analytics frameworks like Apache Spark. We look at two types of Spark workloads: the Spark benchmarks from the Intel HiBench 4.0 suite and a CX matrix decomposition algorithm. We study performance from both the...
متن کاملExperiences Running and Optimizing the Berkeley Data Analytics Stack on Cray Platforms
The Berkeley Data Analytics Stack (BDAS) is an emerging framework for big data analytics. It consists of the Spark analytics framework, the Tachyon in-memory filesystem, and the Mesos cluster manager. Spark was designed as an in-memory replacement for Hadoop that can in some cases improve performance by up to 100X. In this paper, we describe our experiences running BDAS on the new Cray Urika-XA...
متن کاملThe STARK Framework for Spatio-Temporal Data Analytics on Spark
Big Data sets can contain all types of information: from server log files to tracking information of mobile users with their location at a point in time. Apache Spark has been widely accepted for Big Data analytics because of its very fast processing model. However, Spark has no native support for spatial or spatio-temporal data. Spatial filters or joins using, e.g., a contains predicate are no...
متن کاملA Review: Mapreduce and Spark for Big Data Analytics
In this paper we discuss the various challenges of Big Data and problem arises due to continuous explosion of data resulting from the likes of social media and other online sources to gain access to deeper analysis of their data. This paper discusses two of the comparison of Hadoop Map Reduce and the recently introduced Apache Spark – both of which provide a processing model for analyzing big d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015